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Abstract

PM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but 

emissions and concentration trends can vary by location and source type. Such trends should be 

understood to inform air quality management and policies. This work examines trends in 

emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, 

Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National 

Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, 

apportionments from positive matrix factorization (PMF) receptor modeling, and quantile 

regression. Over the study period, county-wide data suggest emissions from point sources 

decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were 

constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation 

of inventory trends. Ambient concentration data also suggest source and apportionment trends, 

e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2 to 3.6 %/yr (faster 

than national trends), and sulfate concentrations (due to coal-fired facilities and other point source 

emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and 

diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine 

sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary 

nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source 

also were present in both cities. These apportionments showed that the median relative 

contributions from secondary sulfate sources decreased by 4.2 to 5.5% per year in Detroit and 

Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 

1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated 

PM2.5 data reveals that source contributions to PM2.5 varied as PM2.5 concentrations decreased, 

and that the fraction of PM2.5 due to emissions from vehicles and other local emissions has 

increased. Each data source has uncertainties, but emissions, monitoring and PMF data provide 

complementary information that can help to discern trends and identify contributing sources. 

Study results emphasize the need to target specific sources in policies and regulations aimed at 

decreasing PM2.5 concentrations in urban areas.
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1. Introduction

Historical ambient air quality monitoring data permit a wide range of trend, apportionment, 

health risk and other analyses. In the U.S., the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) network [1] and the Chemical Speciation Network (CSN) [2] 

have collected ambient data since the mid-1980s that can facilitate these analyses. As 

examples, trend analyses can help evaluate the effectiveness of mitigation and control 

measures, e.g., low emission zones [3], and receptor models can identify and apportion 

contributions of pollutant sources. Both trend and apportionment studies can help to evaluate 

dispersion and exposure models [4]. Monitoring data also have been widely used to estimate 

exposures for epidemiology and risk studies investigating and predicting the health 

consequences of pollutant exposure [5]. Such applications are especially important in areas 

with susceptible populations and where concentrations exceed ambient standards, and for 

those emission sources that are difficult to characterize or that have changed rapidly, e.g., 

on-road emissions, due to recent shifts in fuels, emission controls, and fleet mix.

This study examines focuses on Detroit, MI and Chicago, IL, two U.S. Midwestern cities 

that have high concentrations of industry, extensive vehicle traffic, historical exceedances of 

air quality standards, and large low income and minority populations that are susceptible to 

pollutants. These cities were selected due to the length of the data record available, and to 

contrast trends in the two cities (in adjacent states) potentially differentially affected by the 

2008 recession. In Detroit, receptor model apportionments starting in 1985 have identified 

key PM2.5 sources, which include secondary sulfate aerosol (SO4
=, especially in the 

summer), secondary nitrate (NO3
−), metal processing, biomass burning, other manufacturing 

and industrial operations, vehicle-related emissions (including primary and secondary 

aerosols from tire and brake wear, and entrained dust), and crustal-derived emissions [6–14]. 

In Chicago, identified PM2.5 sources include secondary NO3
−, secondary SO4

=, steel 

operations, (seasonal) road salt, and vehicles [15, 16]. These apportionments, like most 

elsewhere, are based on relatively short periods and have not examined trends. (Recent 

studies in the western U.S. have investigated long term PM2.5 apportionment trends [17, 18]) 

Updated analyses are needed to account for the many changes in emissions and industrial 

activity that have occurred over recent decades.

This study’s goal is to understand the trends in the sources contributing to PM2.5 

concentrations in Detroit and Chicago. In each city, we examine emission inventories, 

ambient pollutant concentrations, and derive source apportionments using receptor models. 

Quantile regression is used to analyze trends in concentrations and receptor model 

apportionments, a novel application of this work. Results are compared to earlier studies, 

and methodological issues are discussed. The study concludes with a discussion of the 

changing apportionments of PM2.5 levels in the two cities and several recommendations.
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2. Methods

2.1 Monitoring site description

Monitoring sites in the two cities were chosen based on the PM2.5 components measured, 

the duration and completeness of the monitoring record, and the diversity of nearby sources. 

The selected sites have speciation records that extend to the early to mid-2000s, and both are 

part of the Speciation Trends Network (STN), a subset of CSN monitoring sites at which 

measurements are taken every 3 days [19]. Figure 1 shows the location of these sites and 

nearby major point sources of PM2.5.

The Allen Park (“Detroit”) site in south Detroit (AQS ID: 26-163-0001; lat/long: 

42.228611/-83.20833) is a non-source and population-oriented monitoring site that has been 

used to detect impacts from mobile sources [20]. It has recorded the highest PM10 levels in 

the area [21]. The site is located within 200 m of a major interstate highway (I-75). The 

immediate vicinity is grassy and wooded; a few covered storage tanks are within 100 m; 

some light industry, trucking firms, suburban areas, etc., are within 1 km; and heavy 

industry, including refineries, steel production, coke and coal-fired electricity generation are 

within 15 km. The speciation record began in 2001. Detroit comprises much of Wayne 

County, which has a population of 1,820,584 (2010) and an area of 1,585 km2 [22].

The Com Edison (“Chicago”) site is located in an urban neighborhood in south Chicago, IL 

(AQS ID: 17-031-0063; lat/long: 41.7514/-87.713488) on the grounds of a small facility of 

the local electrical utility. Nearby emissions sources include rail lines 1 km to the north, and 

two 6-lane arterials (Routes 50 and 12) located 2 km to the west and south, respectively. 

Chicago Midway International Airport is 5 km to the northwest. Heavy industry in Calumet 

and South Chicago, within 20 km, include coal-fired electricity generation, steel mills, and 

wet corn milling (which emits PM, SO2 and volatile organic compounds). The speciation 

record began in 2001, however, instruments were changed in 2005, and so only data after 

2005 are considered. Chicago is located within Cook County, which has a population of 

5,194,675 (2010) and area of 2,448 km2 [22].

2.2 Emissions inventory of local emission sources

Data from the 2002, 2005, 2008 and 2011 National Emission Inventories (NEIs) [23] for 

Wayne and Cook Counties, which include the cities of Detroit and Chicago, respectively, 

were extracted to inform apportionments and to help identify emission trends. (The NEIs are 

revised every three years.) This analysis considers primary PM2.5 (i.e., the sum of filterable 

and condensable PM2.5) emissions from point, non-point, on-road mobile, and off-road 

mobile sources. On-road sources, which include exhaust, brake, and tire wear emissions 

from light and heavy duty diesel and gasoline vehicles, were separated in the analyses. The 

NEI technical support documents were consulted to explain methodological changes 

between NEIs [23].

2.3 Ambient data screening and treatment

The pollutants monitored, as well as monitoring techniques and procedures, have changed 

over the years, and thus some data screening and treatment are required prior to trend 
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analyses. Both sites measured PM2.5 using both federal reference methods (FRMs) and non-

FRMs. The CSN has measured PM2.5 using MetOne SASS and URG samplers (non-FRMs), 

which collect PM2.5 on Teflon filters that are analyzed gravimetrically. Elements are 

measured by X-ray fluorescence on Teflon filters, ions by ion chromatography on nylon 

filters, and elemental (EC) and organic carbon (OC) by thermal optical transmittance (TOT) 

on quartz filters. Most pollutants are measured every third day [24, 25]. In 2007, to reconcile 

differences in OC measurements between CSN and IMPROVE samplers (positive artifacts 

resulted from the absorption of organic vapors to PM [26]), URG 3000N samplers were 

placed at CSN sites to measure EC and OC. The higher flow and face velocity of the URG 

3000N decreases VOC adsorption and increases OC volatilization, thus lowering OC 

concentrations [27]. Along with the instrument switch, the preferred analysis method also 

changed from TOT to thermal optical reflectance (TOR), allowing more direct comparisons 

between CSN measurements of EC and OC to those in the IMPROVE network (which 

historically used TOR). To assess long-term trends, EC and OC measured using TOT were 

used in the present work.

Adjustments used prior to trend analyses included blank correction, censoring of values 

below detection limits, and artifact correction. CSN speciation data are not blank corrected, 

and for most CSN species, the median trip and field blank concentration is zero [28]. 

(Solomon et al. [28] noted that CSN trip and field blanks can be aggregated.) Each 

measurement was corrected by the median of blanks taken within ±1 month, as used 

elsewhere [26, 29, 30]. Any negative blanks were replaced by the median blank for the entire 

record. Corrected measurements that fell below method detection limits (DLs) or that 

became negative were replaced with ½ DL and its measurement uncertainty was replaced 

with the maximum of the reported uncertainty and ⅚ DL [9]. Brown et al. [31] gives 

guidance and reasoning for not censoring those values.

The EC/OC instruments and analytical techniques changed midway through the study 

period. To address the positive sampling artifact in OC measurements using TOT and the 

MetOne samplers [32], a 2012 EPA memo [26] suggested using monthly median passive 

network blanks. However, Solomon et al. [28] noted that passive field blanks may miss 

artifacts arising during active sampling. Fortunately, both Detroit and Chicago sites include 

one year of collocated MetOne SASS and URG 3000N measurements. These collocated data 

were regressed as OCMET = k OCURG + artifact, where k is an estimated regression 

coefficient used to correct OC MetOne measurements prior to the phase-in of URG samplers 

(April 2009 in both cities). At Detroit, the regression used the period from 4/1/2009 to 

3/30/2010 and gave an OC artifact of 0.126 μg/m3 and R2 = 0.77; for EC, R2 = 0.59. At 

Chicago, the regression used the period from 5/1/2009 to 4/29/2010 and the estimated OC 

artifact was 0.303 μg/m3 and R2 = 0.85; for EC, R2 = 0.69. (The supplemental information 

provides additional information, including the outliers removed in this analysis.) The 

estimated OC artifacts are similar to those reported earlier [26, 32]. Future EPA guidance 

may indicate other methods to harmonize EC and OC data measured using the TOT and 

TOR methods.
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2.4 Quantifying trends

Trends in species concentrations from 2001 to 2014 at Detroit and from 2006 to 2014 at 

Chicago were evaluated initially using the non-parametric Kruskal-Wallis (KW) and Mann-

Whitney (MW) tests, and subsequently using quantile regression (QR). (These analyses used 

the quantreg [33] and other packages in R.) Trends in the ‘major’ PM2.5 constituents, 

defined as species constituting an average of at least 1% by mass of PM2.5 (including OC, 

EC, S, NO3
−, NH4

+, and SO4
= ) are of primary interest. Trends in PMF factor mass 

concentrations and percent contributions were evaluated by QR, as described below.

Initially, the study period was broken into year-blocks (2001–2002, 2002–2005, 2006–2009, 

2010–2013, 2013–2015) and seasons (Winter = Dec, Jan, Feb; Spring = Mar, Apr, May; 

Summer = Jun, Jul, Aug; Autumn = Sept, Oct, Nov). Winter trends were analyzed using data 

from consecutive months (e.g., winter 2002 data included measurements or apportionments 

from December 2001 through February 2002). As an initial screen, KW (for 3 or more 

groups) and MW (for 2 groups) tests attaining a p-value of 0.05 or less were used to identify 

differences in the distributions between valid groups of measurements, where a valid group 

was defined as having 10 or more observations with fewer than 50% of observations below 

DLs. (The direction or magnitude of the differences can be investigated using the Dunn and 

other tests [34]).

QR analyses were used to quantify trends of annual median and 90th percentile 

concentrations, which are exposure measures relevant to chronic and acute health effects, 

respectively. Trends of peak values may be susceptible to outliers; trends at lower percentiles 

may be influenced by data censoring. QR also was used to assess trends in relative factor 

contributions (factor mass divided by total modeled PM2.5 mass) to reveal the changing 

sources of PM2.5. Similar to how linear regression coefficients βi are found by minimizing 

the sum of squared residuals calculated as Σ(yi − (β0 + β1xi + ···))2, quantile regression 

coefficients Γi are found by minimizing the sum of absolute residuals applied to the function 

ρτ, Σρτ(τ, yi, ξ(xi, Γ)), where ρτ is the “pinball” function at the desired quantile τ, and ξ(xi, 

Γ) is a linear function of the predictors with Γi as coefficients [35]. The function ρτ is equal 

to τ * (yi − ξ(xi, Γ)) if yi > ξ(xi, Γ) and (1 − τ) * (yi − ξ(xi, Γ)) otherwise. Relative 

(percentage) changes in median and 90th percentile concentrations for calendar years and 

seasons were quantified by dividing the estimated QR slope by the associated median and 

90th percentile concentrations, respectively. Percent per year changes were deemed 

significant if the QR slope exceeded twice the bootstrapped QR standard error.

2.5 PMF receptor modeling

Ambient data used in the PMF apportionments required additional treatment and quality 

checks. Missing observations for key metal species (e.g., Ni, Cr) were replaced with the 

median, and the associated measurement uncertainty was set to four times the median [31]. 

While sometimes the geometric mean is used in place of the median [18], Brown et al. [31] 

recommends investigating scaled residuals when this imputation is performed. For missing 

uncertainties, formula 5.1 and 5.2 from the User Manual of EPA PMF 5.0 were used for 

observations above and below DL values, respectively, with an error fraction of 10% [36]. 

(Only the URG 3000N sampler did not have recorded uncertainties.) CSN data for Detroit 
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and Chicago did not have missing DLs. To increase the reliability and representativeness of 

PMF results, a minimum of 50 observations per species per year was required. Species 

selected for PMF were informed by previous studies: Na+ and K+ were used preferentially 

over Na and K given the higher detection frequencies and relevance for air pollution studies 

[37], and SO4
= rather than S was used as the primary tracer of secondary SO4

= (both have 

been used) [13, 37].

To improve reliability and increase fit, PMF apportionments used observations from the 

cleaned datasets for which ‘reconstructed’ and observed PM2.5 concentrations agreed within 

±4 μg/m3. Reconstructed mass was calculated using a simplified stoichiometry and the 

dominant oxidized forms of measured species (shown in square brackets below) [38]:

While agreement might be determined using a multiplicative factor, e.g., within 25%, a 

concentration band may be more appropriate if errors are primarily additive (rather than 

multiplicative). The ±4 μg/m3 band is reasonably narrow, and fewer than 10% of samples 

exceeded this criterion. In addition, the holiday periods of 31 December through 2 January 

and the weekends closest to 4 July were excluded due to the use of fireworks that contain 

large amounts of potassium nitrate and that can cause deviations from the stoichiometric 

relationship in eq. (1) [9, 15, 31].

PMF 5.0 calculates a signal-to-noise (S/N) ratio for each species, and S/N < 0.5 is 

considered ‘bad’, 0.5 ≤ S/N < 1 ‘weak’, and S/N ≥ 1 ‘strong’. Weak species are down-

weighted in factorization, and bad species are omitted. Additional quality checks included 

comparisons of elemental and ion concentrations (e.g., S to SO4
=, K to K+), and comparison 

of FRM and non-FRM PM2.5 concentrations. After treatment, the final Detroit dataset had 

1422 observations spanning 14 years (2001 to 2014), and the Chicago dataset had 763 

observations spanning 9 years (2006 to 2014).

Sources were apportioned using Positive Matrix Factorization (US EPA PMF5.0) [36] with 

PM2.5 as the ‘total’ variable (with a designation as ‘weak’). Introduced in 1995 [39], PMF 

apportions sources using the following equation: X = Z C + E, where X = n x m matrix of 

observed concentrations (μg/m3) values; n = number of observations; m = number of 

chemical species), Z = n x p matrix of apparent source strengths; p = user-assigned number 

of factors or source categories; C = p x m matrix of derived source compositions; and E = n 
x m matrix of random errors [39, 40]. Error terms are scaled by estimates of observation-

level uncertainty, and Z and C are constrained to be non-negative. X is solved to minimize 

the sum of squares of weighted residuals, , where σij = standard 

deviation of the random errors, which are assumed known. From the solution, the strength 

and composition of each of p factors can be viewed. Some PMF factor mass values are 

allowed to go slightly negative [36], so to maintain the property of each row-normalized 

PMF sample summing to 1 (critical for assessing factor fractional contribution trends); these 

slightly negative values were not censored in trend analyses. (At both cities, fewer than 15% 

of final factors were negative.)
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A range of “additional modeling uncertainties” (e.g., 0, 5, and 10%) were tested using 

features in PMF5.0. Selection of the number of factors and uncertainty additions depends on 

prior knowledge of potential sources, source-receptor relationships, and the stability of 

results [40]. The initial models included 6 to 10 factors. A framework for choosing the 

‘final’ model used a series of checks examining the distribution of species within each 

factor: separation of K+ and OC; the vehicle factor should contain large fractions of total OC 

and EC mass and minimal amounts of other species; a crustal factor (Si, Ti, Ca, Al) should 

emerge; and metals (Ni, Cr, Fe, Mn) should be grouped together. Finally, using PMF 5.0’s 

bootstrapping capability to estimate uncertainties, realized factors should be robust and 

handle additional model uncertainty.

3 Results

3.1 Emission inventory trends

Table 1 summarizes PM2.5 emissions reported in the 2002 through 2011 NEI data. The NEI 

source categories, data and emission factors have shifted over the years, resulting in large 

changes and some difficulty in evaluating trends. The methodological changes can greatly 

affect results and limit its usefulness for trend analyses, at least for certain source types. For 

example, fugitive emissions of PM2.5 from paved roads, unpaved roads, and construction 

sources are calculated by applying a factor to modeled PM10 emissions [41], which itself is 

estimated using emission factors, activity estimates, and other data. These factors have been 

updated several times since 2002 [23, 42], which partially explains the large changes in 

construction dust emissions. Uncertainties in the multiplicative factor used to generate PM2.5 

emissions from PM10 emissions have been discussed at length by Pace [41]. As a second 

example, on-road emissions were calculated over the study period using several models, i.e., 

the National Mobile Inventory Model (NMIM) running MOBILE6 in 2002, 2005, and 

version 1 of the 2008 NEI; and then the Motor Vehicle Emission Simulator (MOVES) in 

versions 2 and 3 of NEI 2008 and 2011. (For non-road mobile emissions, NMIM is still used 

[23].) For mobile sources, important uncertainties include the availability and accuracy of 

the data providing on-road and off-road gasoline and diesel fuel consumption, the age and 

composition of the fleet, and the emission factors [43]. In addition, not all data in the 

inventory is updated each period, e.g., the 2005 non-point emissions mostly used the 2002 

NEI estimates [44]. Uncertainties in the NEI data also limit many comparisons. With these 

caveats, we discuss emission trends in the two cities.

Over the study period in Wayne County (encompassing Detroit), NEI point source emissions 

decreased from 5,364 to 1,610 tons/year, non-road mobile sources decreased from 855 to 

493 tons/year, and on-road mobile emissions (mostly diesel exhaust) fluctuated from a low 

of 916 (2005) to a high of 2,110 tons/year (2008). On-road mobile PM2.5 exhaust emissions 

increased slightly over the study period: both gasoline and diesel vehicle exhaust emissions 

dropped in 2005, but then nearly doubled in 2008. Non-point source emissions (excluding 

mobile sources) also fluctuated, from 1,682 tons/year (2002) to 5,782 tons/year (2008), and 

of the sources in this category, construction dust had the greatest changes, increasing 25-fold 

from 2005 to 2008 (to 350 tons/year), then decreasing by the same amount in 2011. Other 

non-point sources, primarily residential wood combustion, commercial cooking and various 
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industrial processes (550, 450 and 586 tons/year in 2011, respectively), collectively 

represent the largest fraction of PM2.5 emissions in the inventory (45% in 2011). These non-

point emissions had large changes from 2005 to 2011, e.g., residential wood combustion 

increased from 69 (2005) to 1,649 tons/year (2008). The large (over 3-fold) increase in non-

point source emissions between 2005 and 2008 was due mostly to updated estimates of 

fugitive dust.

Emission trends for Cook County (including Chicago) reflect those in Wayne County with 

several exceptions. First, point source emissions stayed fairly constant (2,390 to 2,510 tons/

year, excluding much higher emissions in 2005), compared to the large decreases in Wayne 

County. Second, Cook County had very high emissions of construction dust (up to 6,351 

tons/year, 31% of total PM2.5 in 2011), possibly resulting from construction activities 

(including a number of high-rise buildings), high wind speeds that increase entrainment [45], 

and changes in the calculation methods (noted above). As in Wayne County, non-point 

sources exhibited an over 3-fold increase from 2005 to 2008, and on-road mobile gasoline 

and diesel exhaust emissions dropped in 2005 but then approximately doubled in 2008. Non-

road mobile sources steadily decreased to 7% of total PM2.5 emissions in 2011.

Comparing the two cities, mobile on-road PM2.5 emissions were constant in Detroit (1,126 

to 1,188 tons/year) and increased in Chicago (1,782 to 2,163 tons/year in Cook County) over 

the study period. On-road mobile sources represented 10 to 17% of total PM2.5 emissions 

(depending on year and city). On an area basis, however, mobile emissions in the two cities 

were similar, i.e., 0.75 and 0.88 tons/year/km2 in Wayne and Cook Counties, respectively 

(2011 data). On-road emissions were dominated by heavy-duty diesel vehicle exhaust 

(comprising 61% of emissions in this category in 2011), followed by light-duty gasoline 

vehicle exhaust (28%). Non-road mobile source emission rates were also 1.5 to 2 times 

higher in Cook County, but similar on an areal basis, and the largest source in both cities was 

exhaust from off-road diesel construction vehicles. Diesel railroad emissions in Wayne 

Country were small (29 tons/year in 2002–5, dropping to 0.5 tons/year in 2008–11), 

compared to initially much higher levels in Cook County (555 tons/year in 2002–5, but these 

emissions also plummeted to only 2.8 tons/year in 2008–11). These differences may reflect 

the higher rail activity in Chicago, effects of controls imposed by the 2004 rules for heavy 

duty diesel vehicles [46], the 2008 rules for locomotives [47], and other fleet and emission 

factor changes.

The large uncertainties in nonpoint emissions, the changing methodology in mobile source 

emissions, and potentially other issues in the emissions inventory data can severely limit 

trend analyses of the emissions data. Still, several broad trends are apparent. In 2011, on-

road emissions exceeded non-road mobile emissions in both cities, and the total mobile 

emissions matched (Detroit) or exceeded (Chicago) point source emissions. These data 

suggest several factors that may have affected emissions. In Detroit, the steady decline in 

point source emissions can be attributed to cleaner fuels (natural gas has replaced 

considerable coal), updated emission controls on some facilities, and reduced activity in 

automobile manufacturing and other industries, witnessed by the shuttering of businesses 

and the continued exodus of a large fraction of the population [22], particularly during the 

2008–9 recession. In Chicago, industrial and commercial activity is more diversified (e.g., 
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manufacturing, publishing, finance/insurance, food processing, transport/distribution), the 

population has been more stable, and the recession’s impact on local emitters was likely 

smaller (e.g., the largest local PM2.5 source, a wet corn mill at Corn Products International, 

likely responds less to economic fluctuations than vehicle manufacturing). Estimates of 

traffic activity in both cities showed only small changes, e.g., vehicle miles traveled (VMT) 

in Detroit decreased by 2% since 2004 [48], and Chicago did not have a consistent trend 

[49]. In both cities, the switch to low-sulfur diesel fuel in combination with introduction of 

particle traps have reduced diesel exhaust emissions, although this may be offset by the 

growth in the number of trucks, based on state-level data.

For comparison, we investigated recent regional or national apportionment studies that 

analyzed NEI data. Using NEI data from 2002 through 2011 and predefined source profiles 

in a chemical mass balance (CMB) model in the southeast US, point source emissions 

showed large decreases, while mobile source emissions showed comparable or smaller 

decreases [50]. The largest sources identified by a Bayesian source apportionment model, 

which used CSN data in Boston and Phoenix from 2000 onwards, NEI 2002 data, and 

profiles from the SPECIATE database, were coal and oil combustion, vegetative burning, 

road dust, and vehicles [51]. A hybrid receptor-chemical transport model (CTM) using 

projected NEI 2002 data in six major US cities indicated that coal combustion and on-road 

gasoline emissions were the largest sources of primary and secondary PM2.5 [52]. Using 

fuel-based estimates from on- and non-road mobile sources in California, a range of vehicle 

types showed decreases in emissions and the growing contribution of non-road mobile 

sources relative to on-road sources [53]. Although these earlier studies have some 

similarities to the present study, they neither compared NEI data with CSN data and PMF 

results over the same period nor investigated long-term trends from mobile sources in the 

Midwest, the focus of this work. Lastly, we note that year-to-year emissions of other criteria 

pollutants (SO2, CO, NOx) tend to be more stable than PM2.5, probably because the 

underlying data (e.g., emission and activity factors) are more robust and less subject to large 

methodological changes.

3.2 Concentration trends

Table 2 summarizes annual and seasonal ambient concentrations in the two cities, including 

test results showing differences between year-blocks. (The supplemental information 

contains expanded versions of this table.) Several PM2.5 constituents show considerable 

seasonal variation, e.g., NO3
− levels tended to be highest in winter and fall, and S and SO4

= 

were highest in summer, thus, seasonal analyses are needed to understand trends.

In Detroit, concentrations of PM2.5, NH4, NO3
−, SO4

= and many other species changed 

significantly between year-blocks (p <0.05 for KW and MW tests); in contrast, changes in 

EC and usually OC concentrations were not statistically significant. Comparing the 2006–

2009 and 2013–2015 periods, for example, median SO4
= concentrations fell 33% (from 2.36 

to 1.57 μg/m3), while median EC (URG sampler) levels were unchanged (0.32 and 0.33 

μg/m3). Most species decreased less rapidly than SO4
=, e.g., median PM2.5 concentrations 

decreased only slightly (10.9 to 10.6 μg/m3), although 90th percentile PM2.5 levels fell from 

23.4 to 17.5 μg/m3. Seasonal statistics are similar. In Chicago, concentrations were more 
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stable, e.g., only NH+ and SO4
= changed annually and in each season, and PM2.5, NO3

− and 

S concentrations varied annually and in winter and fall seasons. Concentrations tended to 

decrease from 2006–2009 to 2010–2013, however, levels after 2013 sometimes increased. 

Again, EC and OC showed smaller and fewer significant differences compared to the other 

species. The instrument switch in spring 2010 likely dampened EC and OC trends.

Across the two cities, QR results showed that 50th and 90th percentile concentrations of 

PM2.5 and many of the major species significantly decreased over the study period (Figures 

2 and 3). In Detroit, median concentrations of PM2.5 fell by 3.6 %/yr, and seasonal decreases 

from 2.7 (winter) to 4.9 (spring) %/yr. At the 90th percentile, PM2.5 concentrations declined 

slightly faster with annual levels falling by 4.9 %/yr and seasonal decreases from 3.5 

(winter) to 5.6 (summer) %/yr. Annual and seasonal trends of NH4
+ and NO3

− (at both 

percentiles) were nearly identical, e.g., median levels decreased by 7.0 and 5.5 %/yr overall, 

and declines were fastest in spring (8.6 and 8.2 %/yr) and slowest in winter (5.4 and 3.6 %/

yr); 90th percentile concentrations decreased fastest in summer (9.5 and 8.8 %/yr) and 

slowest in winter (3.4 and 2.1 %/yr). Unsurprisingly, SO4
= and S trends were nearly 

identical, e.g., median concentrations decreased by 5.8 and 4.9 %/yr overall, and changes 

were the smallest in winter (4.0 and 2.9 %/yr) and similar in other seasons (4.8 to 5.9 %/yr); 

90th percentile levels fell fastest in fall (9.2 and 8.9 %/yr) and slowest in winter (3.6 and 

2.8 %/yr). QR results for the two types of EC measurements differed, e.g., ECMET levels did 

not change at annual and seasonal levels other than a 2.7 %/yr decrease seen in the median 

summer levels, while ECURG decreased by 5.0 and 5.8 %/yr at median and 90th percentile 

levels, respectively, largely due to decreases in fall and spring, respectively. OCMET and 

OCURG also showed differences, e.g., median OCMET levels decreased by 6.5 %/yr on an 

annual level and from 4.6 (summer) to 8.5 (fall) %/yr on a seasonal basis; OCURG did not 

show significant changes in any season or percentile. Overall, the seasonal patterns of PM2.5, 

NH4
+ and NO3

− were similar. The shorter time series of EC and OC available for each 

instrument may have obscured trends. In the following PMF application, a complete record 

of adjusted EC and OC concentrations is used to derive long-term trends.

Chicago showed fewer trends that were statistically significant, as well as less consistency 

across related species (Figure 3). Median and 90th percentile levels of PM2.5 dropped by 3.2 

and 4.1 %/yr, respectively, and summer and fall changes at the 90th percentile were 

significant (7.6 and 5.3 %/yr). Decreases in median levels of NH4
+ (8.6 %/yr) were slightly 

larger than changes in Detroit, and decreases in summer and fall were particularly rapid 

(13.5 and 14.2 %/yr). For NO3
−, statistically significant decreases were only seen in fall 

(median and 90th percentile) and winter (90th percentile), and NO3
− and NH4

+ changes were 

not correlated, unlike in Detroit. SO4
= and S trends in Chicago also differed from those in 

Detroit: the largest decreases occur in summer (10.0 and 7.3 %/yr for medians), and the 

smallest in both winter and spring. (Detroit’s largest changes for SO4
= and S were in fall and 

the smallest in winter.) EC and OC trends in Chicago were less pronounced and few attained 

statistical significance, however, there were some similarities in EC trends with patterns 

observed in Detroit. Median levels of ECMET decreased greatly in summer (15.2 %/yr); and 

both median and 90th percentile levels of ECURG fell significantly (3.6 and 5.1 %/yr). 

Seasonal concentrations of OCMET fluctuated (both increased and decreased) across the 

study period, but changes were not statistically significant. Since only three years of data 
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(2006 to early 2010) were available for the Chicago ECMET and OCMET measurements, 

trends for these variables are not reliable. Median and 90th percentile concentrations of 

OCURG decreased (1.9 and 3.9 %/yr). Overall, PM2.5 concentrations in Chicago and Detroit 

decreased at similar rates, but few of the major constituents in Chicago showed seasonal 

trends that were significant or consistent with Detroit’s.

Many of the major species (e.g., NH4
+, NO3

−, SO4
= and S) had greater changes across the 

study period in summer and fall when concentrations were higher, as compared to winter 

when concentrations were often lower. In Detroit, trends in annual median NO3
− and NH4

+ 

concentrations were driven more by changes in spring and less by changes in winter; peak 

concentrations were driven more by changes in summer peaks and less (again) by changes in 

winter peaks. Similarly, changes in annual median SO4
= and S concentrations were driven 

less by changes in winter; changes in peak SO4
= and S were also highest in summer and fall. 

Trends in median and peak PM2.5 concentrations most resembled patterns for the nitrogen 

components, which suggests that in Detroit changes in NO3
− exerted a greater influence on 

PM2.5 levels than SO4
=. This result is unexpected since NO3

− and NH4
+ comprise a smaller 

PM2.5 fraction than OC and SO4
=, however, this analysis does not consider a mass balance 

(e.g., reconstructed mass) or account for correlated species and source contributions (as 

described in the PMF modeling following). Trends in Chicago have some similarities, but 

also notable differences: trends in peak PM2.5 concentrations resembled patterns for SO4
= 

rather than NO3
−; reductions in SO4

= and S in summer and fall were the highest among 

seasons, and only peak PM2.5 trends in summer and fall were statistically significant. This 

pattern also conforms to the KW and MW test results, and suggests that PM2.5 levels in 

Chicago aligned more with changes in SO4
= than NO3

−.

Both regional and local sources influence concentration trends. Secondary regional 

pollutants are important constituents of PM2.5 in the Midwest, and much of the SO4
= in the 

region results from long range transport from large coal-fired boilers and power plants. 

Many of these facilities have reduced emissions of precursor SO2 in recent decades by the 

addition of scrubbers and fuel switching. In cases, such changes have not occurred for the 

generally smaller and often older coal-fired facilities located in cities, a result of space 

constraints, costs and other issues. NO3
−, another secondary pollutant from precursor NO 

and NO2 emissions (largely from mobile sources and power plants), often has the highest 

levels in winter and spring when O3 concentrations are low [54]. Both SO4
= and NO3

− are 

present in the Midwest atmosphere as ammonium sulfate and ammonium nitrate due to 

ammonia emissions from fertilizers and animal feed [55]. OC is derived from primarily 

vehicle emissions and biomass burning [13]. The largest contributor to EC is diesel exhaust 

emissions [56]. Road dust contributions (i.e., Si, Ti, Ca, Al) are normally low in winter due 

to lower siltation levels [57]. Concentrations of major species in both cities followed 

expected seasonal trends [58], e.g., NH4
+ and NO3

− were highest in the winter, SO4
= was 

highest in the summer, and EC and OC were higher in summer than winter.

Overall, median PM2.5 concentrations in the two cities declined by 4.3 to 4.5 %/yr: 

comparable rates have been shown in several national and regional assessments. Nationally, 

a 27% drop in average PM2.5 from 2000 to 2010 (2.7 %/yr) has been reported [59, 60]. The 

Lake Michigan Air Directors Consortium (LADCO) estimate a 0.51 μg/m3 per year decrease 
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in 90th percentile PM2.5 concentrations from 1999 to 2007 across the region [61], which 

(when converted) is in the range of %/yr decreases in the present work. The monitoring data 

also reveal the changing composition of PM2.5: the share is growing for EC and OC, but 

declining for SO4
= and NO3

−. While many sources emit EC and OC, local vehicle emissions 

are one of the larger contributors [57, 62, 63]. In contrast, SO4
= largely arises from local and 

regional point sources [6]. The less pronounced trends at Chicago may reflect the shorter 

study period, as well as smaller changes in the local and regional sources.

Trends in the ambient monitoring data have some consistencies with the emissions inventory 

data discussed earlier, particularly for the combustion sources (point and mobile exhaust; 

Table 1). For example, ambient levels of SO4
=, NO3

−, and NH4
+ in Detroit fell by 5 to 

10 %/yr over the 2002 and 2011 study period, while point source emissions decreased by 

roughly 11 %/yr. In contrast, ambient levels of EC showed few significant changes, 

consistent with fluctuating trends of on-road diesel exhaust emissions. In Chicago, SO4
= and 

NH4
+ also decreased significantly from 2006 to 2014, and the emissions inventory showed a 

concurrent drop in point source emissions. As noted earlier, a number of issues in the 

emissions inventories limits the comparability of trends.

Concentration trends also can be framed in the context of species abundance (i.e., species 

concentration / PM2.5 concentration on a per-sample basis). However, given issues with EC 

and OC measurements (key tracers for vehicle emissions), uncertainties in the stoichiometric 

balance, and the correlation among both major and minor species, trend analyses of PMF 

factor contributions should be more meaningful; in addition, PMF contributions (by 

definition) sum to unity on a per-sample basis. We next extend the trend analyses to examine 

source contributions apportioned using receptor modeling.

3.3 Long term source apportionments

The final PMF model for Detroit had nine factors with 5% additional model uncertainty, and 

the final model for Chicago had eight factors with 0% additional model uncertainty (Figure 

4). This number of factors and the (small) uncertainty additions (in Detroit) yielded factors 

that were interpretable and comparable to those in the literature, and both models closely 

matched PM2.5 observations (Detroit: R2 = 0.96; Chicago: R2 = 0.90). Sources associated 

with each factor, which have been identified in previous apportionments [12, 15], included 

secondary SO4
= (characterized by SO4

= and NH4
+), secondary NO3

− (NO3
− and NH4

+), 

vehicle emissions (EC for diesel vehicles and OC for gasoline vehicles), biomass burning (K

+), industrial metal working (Ni, Cr, Mn, Fe), crustal sources (e.g., entrained soil as noted by 

Al, Si, Ca, Ti), and a zinc factor (which also can represent industrial emissions) [12]. While 

not unique tracers, OC and EC have been used to separate vehicle emissions into gasoline 

and diesel categories, respectively [13]; a factor containing both OC and EC can represent 

emissions from a mixed fleet. In the final models, a single factor contained moderate to high 

levels of both EC and OC, and thus the vehicle factor represents contributions from a mixed 

fleet.

The final PMF models using the full dataset gave nearly identical apportionments in Detroit 

and Chicago for the largest sources: sulfate formed 32 – 33% of PM2.5; vehicles contributed 

21 – 22%; nitrate constituted 21%; and biomass was 7 – 9%. These four sources represent 

Milando et al. Page 12

Atmos Environ (1994). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over 80% of PM2.5. Minor sources, e.g., crustal (4 – 8% of PM2.5), several metals (4 – 11%) 

and Cl/NaCl (2 – 5%) showed greater variation, but accounted for relatively little PM2.5 

mass. The similarity of the apportionments for the major local sources (e.g., vehicles and 

biomass) is supported by the emissions inventory, e.g., the similarity of traffic emissions 

when expressed on an area basis; and the similarity of the secondary contributions (e.g., 

sulfate and nitrate) may reflect the same regional sources in these nearby cities (e.g., a large 

number of coal-fired power plants).

3.4 Source apportionment trends

The QR analysis of trends for the PM2.5 PMF factors in Detroit is displayed in Figure 5. 

These trends only roughly followed results seen for the major species in each factor (shown 

earlier in Figure 2). Median concentrations of the secondary sulfate factor declined by 

8.3 %/yr, and seasonal changes were largest in fall and smallest in winter and summer. At 

the 90th percentile, sulfate factor concentrations declined slightly faster, 9.2 %/yr overall, 

and declines were greatest in summer and smallest in winter. Changes in SO4
= or NH4

+ 

concentrations (dominant contributions to this factor) did not match the secondary sulfate 

pattern with the exception of the 90th percentile concentration change of NH4
+. For the 

secondary nitrate factor, overall concentrations declined 7.0 %/yr, and statistically 

significant decreases of 9.2 to 11.7 %/yr occurred in spring, summer and fall (but not 

winter). This pattern (as well as the 90th percentile pattern) was not matched by NO3
− and 

NH4
+, this factor’s major contributors. For the vehicle factor, decreases in median and 90th 

percentile factor concentrations were fairly consistent (2.8 to 5.2 %/yr, depending on season) 

but dissimilar to trends in measured EC and OC. The biomass factor did significantly change 

over the study period. Trends of factors representing the smaller PM2.5 fractions may be less 

reliable for several reasons, e.g., PMF uncertainties (smaller factors are dominated by 

species with higher %BDL and thus higher associated uncertainties) and factor splitting 

(where changing the number of factors causes minor species to group in ways that may 

affect trends in minor factors). Still, several of the smaller components had statistically 

significant changes: the metals factor increased by 3.9 and 2.4 %/yr for the median and 90th 

percentile, respectively; and the crustal factor declined by 5.8 % and 3.3 %/yr for the median 

and 90th percentile, respectively (the large decrease in winter was particularly notable).

The QR trend analysis for the Chicago PMF factors is depicted in Figure 6. Median 

concentrations of the secondary sulfate factor decreased by 9.3 and 9.2 %/yr for the median 

and 90th percentile, respectively; decreases were largest in summer. As in Detroit, these 

patterns differed from the trends of SO4
= and NH4

+ concentrations (Figure 3). For the 

secondary nitrate factor, the only significant trends were decreases in the median 

concentrations in overall and in fall. Concentrations attributed to the vehicle factor did not 

change significantly. Few of the smaller factors at Chicago had statistically significant trends 

other than the median biomass contribution, which grew by 8.9%/yr due to large increases in 

spring and fall seasons.

A key result of this analysis is to show that PM2.5 contributions from different sources have 

been evolving at different rates. In both cities, secondary sulfate has decreased faster than 

both the total PM2.5 concentration as well as contributions of other factors identified by 
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PMF, thus the relative significance of non-sulfate source factors increased over time. In 

particular, emissions from coal-fired facilities producing secondary sulfate and nitrate have 

been decreasing, while contributions from vehicle, biomass and metal (Chicago only) 

sources have been constant or just slightly declining. Given the trend of declining PM2.5 

levels, the vehicle, biomass and metal sources are becoming an increasing fraction of PM2.5. 

Expressed as a percentage of the PM2.5 concentration, the median contributions from 

secondary sulfate sources have decreased by 4.2 to 5.5% per year in Detroit and Chicago, 

while the contributions from metals sources, biomass sources, and vehicles have increased 

from 1.3 to 9.2% per year. (The Supplemental Information provides a discussion of seasonal 

factors and shows long term trends as Figures S1 and S2 in the two cities.)

3.5 Vehicle apportionments and comparison to previous work

Many of the apportionment results described previously follow trends suggested by the 

emissions inventory and concentration data, and they also resemble previous apportionments 

in both cities conducted over the past 35 years. Here we examine those previous studies, 

focusing on vehicle apportionments given their significance as local emission sources in 

both cities.

In Detroit, using data from June through August of 1981 and a six source principal 

components model, vehicles accounted for 20% of the variability of PM2.5 [6]. Vehicles 

accounted for 10 to 25% of PM2.5 in a six factor PMF model using summer and early 

autumn data from 2000 to 2003 [7]. Using 2000 to 2005 data and a nine factor model, 21% 

of PM2.5 in Detroit was attributed to vehicles [64]. Using the same data in an eight factor 

PMF model, gasoline and diesel vehicle contributions were separated with 15% and 4% 

apportioned, respectively [12]. That analysis did not include Ni or Cr, which may have 

affected the EC distribution between factors and changed results for diesel, and a lack of 

seasonality in the gasoline and vehicle factors was noted, contrary to the present findings 

(which used some of the same data). A recent analysis of 1999 to 2002 data attributed 22% 

of PM2.5 to OC combustion sources and 15% to EC combustion sources in southwest 

Detroit, however, NO3
− was not measured, potentially increasing the mass assigned to these 

factors [14]. Using August 2004 and July and August 2005 data, 29% and 8% of PM2.5 was 

assigned to gasoline and diesel sources, and 31% to a combined gasoline and diesel fleet [8]. 

A recent Detroit area study, using 2004 to 2006 Allen Park data in a seven factor PMF 

model, attributed 22% of PM2.5 to gasoline and diesel sources [11]. Using 2007 data from 

nearby Dearborn, Michigan, in an analysis incorporating wind direction, approximately 10% 

of PM2.5 was apportioned to vehicles (diesel plus gasoline) [65]. Other apportionments cited 

in Michigan’s PM2.5 2008 State Implementation Plan [66] showed vehicle apportionments 

comparable to the present study. Differences in samplers, species selected, length and 

seasons of the monitoring data used, and choices made in PMF modeling can diminish the 

comparability of these studies. Still, vehicle contributions in these earlier studies mostly 

ranged from 15 to 30% of PM2.5, commensurate with the apportionments in the present 

analysis.

Several source apportionments have been performed in Chicago. Again, we focus on the 

vehicle component. In Northbrook IL (close to Chicago), using data from January, 2003 to 
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March, 2005, 14% of PM2.5 was apportioned to gasoline sources and 13% to diesel [9]. The 

diesel profile included Al and Pb, elements assigned to other factors in the present study. 

Using 2001 to 2003 data at two CSN sites (Lawndale and Springfield, IL), 23% of PM2.5 

was apportioned to a combined vehicle profile [15]. That apportionment included both SO4
= 

and SO2 (26), as well as both ionic and molecular forms of Na, Na+, K and K+. Despite 

these and other differences, the fraction of PM2.5 attributed to gasoline and diesel vehicles in 

Chicago studies compare favorably to our estimates.

Vehicle apportionment trends have been studied elsewhere in the U.S. In Los Angles and 

Rubidoux, CA, a recent analysis using 2002 to 2013 STN data apportioned 20% of PM2.5 to 

vehicles, and median PM2.5 concentrations attributed to vehicles fell 21 to 24% between the 

first and last 4 year blocks of the study [18]. Vehicle-related PM2.5 decreased while traffic 

volume was stable, suggesting the success of recent vehicle emissions controls. Like the 

present work, that study shows the relevance of receptor modeling apportionments for air 

quality management, as well as the evolution of source contributions to total PM2.5. In 

contrast, we show that the share of PM2.5 due to vehicle-, biomass- and other local 

emissions is stable or growing, and that trends depend on the city, percentile, and sometimes 

season (Figures S1 and S2).

3.5 Limitations

Limitations of the analysis are recognized. Emission inventory data at the county level may 

not reflect the impact at monitoring sites, which can be affected by small but nearby sources, 

as well as large but distant sources (including sources outside county and country borders). 

A number of issues with the accuracy and consistency of the emissions inventory data were 

highlighted, e.g., fugitive dust emissions estimates are highly uncertain. The monitoring 

record is limited in both the duration and the number of sites available. Only two cities, and 

a single site in each, were examined. (Previous work has shown spatial trends in several 

PM2.5 species [21]). However, the selected non-source and population-oriented monitoring 

sites should be reasonably representative. As noted, monitoring data near strong sources 

would be expected to show different trends for some PM2.5 constituents as well as different 

apportionments, however, secondary sulfate, secondary nitrate, and potentially the vehicle 

contribution might not change greatly since these pollutants are widely distributed. The EC 

and OC instrument switch complicated the investigation of trends, particularly for mobile 

sources given the importance of these tracers. Still, most results follow national trends, and 

thus results appear broadly applicable to many U.S. cities.

The PMF analyses have additional limitations. First, results can be sensitive to the number 

of factors, species selected, and the data subset used. In sensitivity analyses, separate PMF 

models for individual four year blocks obtained average apportionments that were similar to 

those using the final model (across all years), but some trends were difficult to compare 

because factors varied across models. (Still, separate PMF models used for periods before 

and after the EC/OC instrument switch returned similar vehicle apportionments in models 

using different number of factors.) For these reasons, the current analysis used a single 

dataset that encompassing the entire study period. Second, trend analyses of PMF results can 

be sensitive to the model selected. The stability of PMF results was investigated using 200 
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bootstrapped runs for each factor. In over 180 of 200 bootstrap runs at each city, the same 

factors emerged that are presented in these results. (Additional bootstrap results are 

presented in supplemental tables.) Third, PMF apportionments may not uniquely identify or 

completely characterize source classes, e.g., many factors might contribute to secondary 

sulfate trends. Similarly, unspecified minor sources and secondary pollutants can contribute 

to factors. Fourth, data screening can affect results, particularly for species near the DL. 

Fifth, PMF trend analyses may incorporate some biases because observations were removed 

by the reconstructed mass criterion. However, only 7% of sampling days at Detroit, and 6% 

at Chicago, were removed. Sixth, we did not apply conditional probability functions (CPF), 

which might provide additional qualitative information regarding the strength of local 

sources that complements the PMF results [67]. Finally, the QR results do not account for 

the uncertainty of the PMF results, and thus determinations of statistical significance are 

approximate.

3.6 Recommendations

This study reports on trends and apportionments using a long record of emissions and 

ambient monitoring data from two cities. Analyses were constructed to provide consistent 

results, to combine emissions and ambient data, and to focus on contributions from both 

regional and local sources. While several differences between the two cities were noted, 

most trends were consistent and supported by both emissions and ambient data, as well as 

the PMF source apportionments. Such trends can inform air quality regulation and policy, 

including the formulation and implementation of emission and ambient standards, which in 

turn can lead to emission controls, new technologies, and promotion of cleaner fuels, among 

other options. These responses are most effective when emission sources can be clearly 

defined and apportioned. However, this approach may not adequately protect vulnerable 

populations given recent trends, including decreasing concentrations of regional and national 

pollutants [59], increasingly indistinct profiles and identifications of local emission sources, 

the significance of secondary pollutants, and the still nascent understanding of health 

impacts associated with low concentration exposures and pollutant mixtures. A better 

understanding of emissions, ambient concentrations and source apportionments is required 

to reduce pollutant exposure and health impacts. The integration of source- and receptor-

oriented apportionments, utilized in the present analysis, can enhance the ability to tease out 

contributions of sources for targeted interventions.

Future analyses may be strengthened in several ways. First, analyses might be stratified by 

climatic or meteorological variables to better account for seasonal factors than calendar-

based periods, and to better separate trends in primary and secondary components [67]. 

Second, weekday/weekend groupings may reveal additional trends and better discriminate 

sources, particularly since truck traffic decreases significantly on Sundays [68]. Similarly, 

there may be opportunities to stratify by wind direction and other meteorological factors, 

although the duration (24 hr) and frequency (every third day) of the CSN measurements may 

prove limiting. Third, hourly speciation measurements and stratification of PMF results by 

wind direction may improve the ability to identify sources [64]. Fourth, comparisons of 

factor contribution on high and low pollution days might help distinguish contributions of 

local sources, e.g., traffic-related air pollutants [61]. Fifth, while emissions trends can be 
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tracked for some sources, greater consistency in methods and source grouping across years 

would improve long-term studies. In particular, emissions data for crustal, fugitive, metals 

and biomass sources is highly uncertain. Sixth, regional emission inventories might be 

examined to help confirm changes in regional contributors of secondary sulfate and nitrate. 

Finally, applications of long term trend analyses to other cities would be help confirm trends.

4 Conclusions

The changing contribution of PM2.5 sources is shown by long term trends in PM2.5 

emissions, concentrations and PMF source apportionments in Detroit and Chicago. In both 

cities, PM2.5 levels have been declining, primarily due to reductions in secondary sulfate 

and, to a more limited extent, in nitrate sources, while the importance of emissions due to 

vehicles, biomass, and metals sources is increasing. This is supported by examining three 

data sources: county emission data, which show constant or declining emissions from point 

sources and slightly increasing or constant emissions from on-road mobile sources; ambient 

monitoring data, which show rapid declines in SO4
= and NO3

− concentrations, but steady or 

increasing abundances of OC and EC, tracers for gasoline and diesel vehicle exhaust; and 

receptor model results, which show increasing relative (percentage) contributions from these 

sources. Quantile regression estimates of PMF results, expressed as the %/yr change in the 

annual median relative contribution to total PM2.5 over the study period, show that the 

contribution from secondary sulfate decreased by 4.3 to 5.5 %/yr, while vehicle, biomass 

and metals source contributions increased by 1.3 to 9.2%. In most cases, the rate of change 

depends on the season and concentration percentile.

The study has several unique aspects. Trends in emissions and ambient data, which provide 

complementary information, are compared and critiqued. The PMF application covered an 

extended period (up to 14 years), which allowed for analyses of annual and seasonal 

apportionment trends. Also novel is the determination of concentration and apportionment 

trends using quantile regression, a method that provides robust results.

The study’s key finding that, in both cities, the mobile source, biomass, and metal source 

contributions to PM2.5 have increased even as overall PM2.5 concentrations have declined, 

has significant implications for air quality management. It emphasizes the need to 

investigate these sources in policies and regulations aimed at maintaining or decreasing 

PM2.5 concentrations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Since 2001, PM2.5 concentrations have declined and compositions have changed.

Changes in methodology limit interpretation of emission inventory trends.

Quantile regression allows for trend assessment at various relevant percentiles.

Emissions from vehicles, biomass, and metals sources are of growing importance.

Milando et al. Page 22

Atmos Environ (1994). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Maps showing Allen Park, Detroit (A) and Com Edison, Chicago (B) monitoring sites and 

nearby point sources emitting more than 25 tons of PM2.5 in 2011.
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Figure 2. 
Annual and seasonal concentration trends in Detroit from 2001 to 2015. Shows annual 

changes in median concentrations as blue circles (●, ○) and in 90th percentile 

concentrations as red triangles (▲, △) for selected major species, expressed as %/yr for all 

seasons (A), winter (W), spring (Sp), summer (Su) and fall (F). Based on quantile 

regressions of ambient measurements. Filled symbols (e.g., ●) are statistically significant, 

i.e., trend exceeded 2-times its bootstrapped standard error.

Milando et al. Page 24

Atmos Environ (1994). Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Annual and seasonal concentration trends in Chicago for median and 90th percentile 

concentrations from 2006 to 2014. Otherwise as Figure 2.
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Figure 4. 
Distribution of species by factor in PMF models for Detroit (A) and Chicago (B). Overall 

percentage contribution to modeled PM2.5 is listed for each factor.
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Figure 5. 
Annual and seasonal trends of PMF apportionments by source category in Detroit from 2001 

to 2014. Shows changes in median concentrations as blue circles (●, ○) and 90th percentile 

concentrations as red triangles (▲, △), expressed as %/yr for all seasons (A), winter (W), 

spring (Sp), summer (Su), and fall (F). Based on quantile regressions of estimated 

concentration apportionments from nine factor PMF model. Filled symbols (e.g., ●) are 

statistically significant, i.e., trend exceeded 2-times its bootstrapped standard error. Values 

below 0 not censored.
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Figure 6. 
Annual and seasonal trends of PMF apportionments by source category in Chicago from 

2006 to 2014 using an 8-factor model. Otherwise as Figure 5.
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